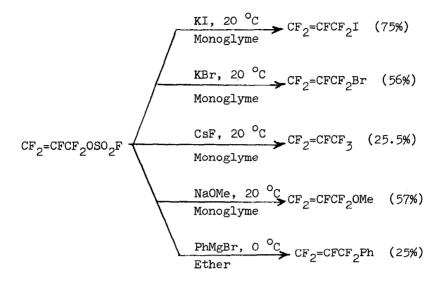
Received: December 12, 1981

PRELIMINARY NOTE

Perfluoroallyl Fluorosulphonate

RONALD E. BANKS, J. MICHAEL BIRCHALL, ROBERT N. HASZELDINE, and WILLIAM J. NICHOLSON


Chemistry Department, The University of Manchester Institute of Science and Technology, Manchester M60 1QD

SUMMARY

Perfluoroallyl fluorosulphonate, procured <u>via</u> treatment of perfluoropropene with stabilized sulphur trioxide ('Sulfan'), reacts with potassium iodide, potassium bromide, sodium methoxide, and phenylmagnesium bromide to yield the corresponding perfluoroallyl derivatives $CF_2=CFCF_2X$, where X = I, Br, OMe, and Ph respectively.

Du Pont researchers have disclosed recently [1] that perfluoroallyl fluorosulphonate, CF_2 = $CFCF_2OSO_2F$, can be procured by treatment of perfluoropropene with sulphur trioxide in the presence of boron-based catalysts [e.g. BF₃, B(OMe)₃, B₂O₃] and converted into perfluoroallyl iodide with sodium iodide in acetone. This prompts us to report that in the late 1960s, whilst involved in work on the β -sultone $CF_3CFCF_2OSO_2$ [2], we discovered that failure to remove the boron-containing stabilizer present in commercial sulphur trioxide * led, in reactions involving perfluoropropene at 60 $^{\circ}$ C (4 h in Pyrex), to formation of a mixture of the sultone (54.5% yield) and perfluoroallyl

^{*} Sulfan [Hardman and Holden (Manchester UK)]

fluorosulphonate (37.5% yield). Our investigation of the use of the fluorosulphonate in the synthesis of 3-substituted pentafluoropropenes is summarized in the scheme.

- 1 C.G. Krespan and D.C. England, J. Amer. Chem. Soc., <u>103</u> (1981) 5598.
- 2 R.E. Banks, G.M. Haslam, R.N. Haszeldine, and A. Peppin, J. Chem.Soc. (C), (1966) 1171; R.E. Banks, R.N. Haszeldine, and A.L. Jones, unpublished work.